## Aquecedor Indutivo EHP GB10

## NSK




## SUMÁRIO

1. APRESENTAÇÃO ..... 4
2. VANTAGENS ..... 4
3. RECOMENDAÇõES DE SEGURANÇA ..... 5
3.1. SIMBOLOGIA ..... 5
4. INFORMAÇÕES DO EQUIPAMENTO ..... 6
4.1. AQUECEDOR INDUTIVO EHP GB10 ..... 6
4.2. ESPECIFICAÇÕES TÉCNICAS ..... 7
5. INSTALAÇÃO ..... 8
5.1. RECOMENDAÇÃO PARA INSTALAÇÃO DO EQUIPAMENTO ..... 8
5.1.1. Movimentação e posicionamento ..... 8
5.1.2. Instalação elétrica ..... 8
5.1.3. Importante ..... 9
5.1.4. Funções do Painel de Controle ..... 10
6. OPERAÇãO ..... 10
6.1. SEQUÊNCIA OPERACIONAL CONTROLE TEMPERATURA OU TEMPO ..... 10
7. MANUTENÇÃO ..... 15
7.1. POSSÍVEIS FALHAS ..... 15
7.1.1. O equipamento não liga ..... 15
7.1.2. O equipamento não aquece no modo temperatura ..... 16
7.2. POSSÍVEIS FALHAS DE COMANDO NA PLACA ..... 16
8. SEGURANÇA ..... 17
8.1. INFORMAÇÕES SOBRE SEGURANÇA E MANUTENÇÃO ..... 17
8.1.1. Características de segurança ..... 17
8.1.2. Cuidados e advertências na segurança ..... 17
8.1.3. Análise de riscos ..... 18
8.1.4. Equipamentos de proteção individual recomendados ..... 18
8.2. CUIDADOS E ADVERTÊNCIA NA MANUTENÇÃO ..... 18
8.2.1 Análise de riscos ..... 19
9. LISTA DE PEÇAS PARA REPOSIÇÃO ..... 19
10. GARANTIA ..... 20

## 1. APRESENTAÇÃO

0 Aquecedor Indutivo EHP GB10 tem como principal função o aquecimento de peças em forma de anel rolamentos, engrenagens, polias e buchas - que necessitam de dilatação do diâmetro interno para que sejam montadas. O princípio de funcionamento do Aquecedor Indutivo EHP GB10 pode ser comparado ao de um transformador. A tensão e corrente elétrica, que circulam nas espiras da bobina de indução, induzem uma baixa tensão, ou seja, alta intensidade de corrente elétrica na peça. Como a peça se comporta como uma bobina de uma espira só, a alta intensidade de corrente gera calor apenas na peça. Uma vez que o calor é gerado apenas na peça, todos os componentes do aquecedor permanecem frios.

O funcionamento do aquecedor é controlado pelo sistema eletrônico interno (operado em extra-baixa tensão) em qualquer um dos dois modos (tempo/temperatura). Sendo este único e exclusivamente responsável por chavear eletronicamente o disparo do Tiristor de módulo responsável pela "liberação" da energia elétrica para a bobina de indução tendo por consequência o aquecimento da peça. 0 aquecimento sobre hipótese alguma será iniciado automaticamente quando o equipamento for plugado à rede de alimentação e/ou o disjuntor geral for acionado. O início do aquecimento será sempre realizado através do botão "LIGA" localizado no painel de operação do equipamento, o qual deve ser acionado intencionalmente pelo operador do equipamento.

## 2. VANTAGENS

- Pode ser usado tanto para rolamentos blindados quanto para rolamentos normais;
- É adequado para expansão de qualquer peça metálica em forma de anel;
- Aquece a peça de maneira uniforme e controlada;
- Elimina danos que possam ocorrer durante o processo de montagem da peça;
- Aumenta a vida útil do rolamento, pois expande o anel, reduzindo, deste modo, qualquer interferência mecânica que normalmente ocorra durante a montagem;
- Possibilita a montagem da peça em qualquer local devido à facilidade de transporte do aparelho;
- Reduz o tempo de montagem;
- Apresenta baixo consumo de energia;
- Simplicidade de manuseio;
- Oferece alta segurança em operação (sem risco de incêndio);
- Não apresenta efeitos nocivos ao meio ambiente.


## 3. RECOMENDAÇÕES DE SEGURANÇA

- Siga sempre as instruções de uso;
- Certifique-se de que a tensão de alimentação está correta;
- Uma vez que o Aquecedor Indutivo EHP GB10 gera um campo magnético, as pessoas que usam marca-passo devem manter uma distância de cinco metros do equipamento durante o seu funcionamento. Equipamentos eletrônicos, como relógio de pulso, também podem ser afetados;
- Nunca use o Aquecedor Indutivo EHP GB10 sem o bastão instalado;
- Não exponha o Aquecedor Indutivo EHP GB10 a níveis elevados de umidade;
- Não faça alterações no Aquecedor Indutivo EHP GB10;
- Utilize equipamentos de manuseio adequados ao manipular peças de trabalho pesado;
- Evite o contato com peças de trabalho quentes. Para manusear peças de trabalho quentes, utilize luvas resistentes ao calor.


### 3.1. SIMBOLOGIA

| Símbolo | Descrição |
| :---: | :---: |
|  | Indica a necessidade de evitar a aproximação de pessoas com relógio analógico em uma distância de cinco metros do equipamento. |
|  | Indica que é proibida a aproximação de pessoas que fazem uso de marca passo em uma distância de cinco metros do equipamento. |
| CUIDADO DESLIGUE DA TOMADA ANTES DA LIMPEZA MANUTENGAAO | Antes de efetuar limpeza ou manutenção deve-se desligar o equipamento, desligar o disjuntor geral e retirando o plug de alimentação da tomada. 0 disjuntor deve estar travado para impedir a reenergização. |

## 4. INFORMAÇÕES DO EQUIPAMENTO

O princípio de funcionamento do Aquecedor Indutivo EHP GB10 pode ser comparado ao de um transformador. A tensão e corrente elétrica, que circulam nas espiras da bobina de indução, induz uma baixa tensão, ou seja, alta intensidade de corrente elétrica na peça. Como a peça se comporta como uma bobina de uma espira só, a alta intensidade de corrente, gera calor apenas na peça. Uma vez que o calor é gerado apenas na peça, todos os componentes do aquecedor permanecem frios. 0 funcionamento do aquecedor é controlado pelo sistema eletrônico interno (operado em extra baixa tensão) em qualquer um dos dois modos (tempo/temperatura), sendo este, única e exclusivamente responsável por chavear eletronicamente o disparo do módulo Tiristor, que é responsável pela "liberação" da energia elétrica para a bobina de indução e, por consequência o aquecimento da peça. 0 aquecimento sobre hipótese alguma irá iniciar automaticamente quando o equipamento for conectado à rede elétrica e/ou o disjuntor geral for acionado. 0 início do aquecimento será sempre realizado através da tecla "liga" localizada no painel de operação do equipamento, devendo este ser acionado intencionalmente pelo operador do equipamento.

### 4.1. AQUECEDOR INDUTIVO EHP GB10

O Aquecedor Indutivo EHP GB10 foi desenvolvido especialmente para aquecimento de rolamentos, engrenagens e acoplamentos. Acompanham o aquecedor 04 (quatro) bastões de aquecimento.
Segue abaixo, tabela com dimensões dos bastões, bobina e dos diâmetros das peças utilizadas:

| Dimensōes dos bastōes (mm) | $23 \times 23$ | $43 \times 43$ | $58 \times 58$ | $73 \times 73$ |
| :---: | :---: | :---: | :---: | :---: |
| Mínimo/Máximo diâmetro interno da peça $(\mathrm{mm})$ | 40 a 62 | 62 a 84 | 84 a 104 | 104 a 160 |


| Dimensão da bobina $(\mathrm{mm})$ | $\mathbf{1 5 5}$ |
| :---: | :---: |
| Mínimo/Máximo diâmetro interno da peça $(\mathrm{mm})$ | 160 a 600 |
| Largura Máxima da peça $(\mathrm{mm})$ | 300 |



A placa eletrônica digital micro processada tem as seguintes funções:

- Controle de tempo ou temperatura digital com dois displays;
- Controle de potência (50\%, 100\%);
- Habilitar/desabilitar aquecimento.


### 4.2. ESPECIFICAÇÕES TÉCNICAS

| Características | Especificações |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Dimensões máximas das peças a serem aquecidas. | Diâmetro interno: 40 mm à 600 mm Diâmetro externo: até 800 mm Largura: até 300 mm no aquecedor |  |  |  |
| Tensão de alimentação do equipamento (verificar indicação na etiqueta). | $\begin{gathered} 220 \mathrm{Vca} \\ 60 \mathrm{~Hz} \end{gathered}$ | $\begin{gathered} 380 \mathrm{Vca} \\ 60 \mathrm{~Hz} \end{gathered}$ | $\begin{gathered} 440 \mathrm{Vca} \\ 60 \mathrm{~Hz} \end{gathered}$ | 480Vca 60 Hz |
| Tensão de comando | 5Vcc |  |  |  |
| Fusível de proteção do comando | 1 A |  |  |  |
| Disjuntor geral de proteção | 80A |  |  |  |
| Potência instalada | 20/30kVA |  |  |  |
| Controle temporizado digital | Variação de 1 em 1 segundo até 59 segundos (0.59), a partir é contado 1 minuto e 59 segundos (1.59) e partir de 10 minutos, é contado 10 em 10 segundos (10.2). Tempo máximo 60 minutos. |  |  |  |
| Controle temporizado digital com sensor | Temperatura máxima de controle $250^{\circ} \mathrm{C}$ Para rolamento aconselhado a temperatura de controle até $120^{\circ} \mathrm{C}$ |  |  |  |
| Alarme sonoro no final da operação | Sim |  |  |  |
| Desmagnetização | 3 segundos (1,24 A/cm máx.) Magnetismo residual |  |  |  |
| Peso BASTÃO DE AÇO SILÍCIO GNO de $23 \times 23 \times 505 \mathrm{~mm}$ | 2 kg |  |  |  |
| Peso BASTÃ0 DE ACO SILÍCIO GNO de $43 \times 43 \times 505 \mathrm{~mm}$ | 6,5 kg |  |  |  |
| Peso BASTÃ0 DE AÇO SILÍCIO GNO de $58 \times 58 \times 505 \mathrm{~mm}$ | $11,5 \mathrm{~kg}$ |  |  |  |
| Peso BASTÃO DE AÇO SILÍCIO GNO de $73 \times 73 \times 585 \mathrm{~mm}$ (bastão deslizante) | $22,8 \mathrm{~kg}$ |  |  |  |
| Peso aquecedor | 190 kg |  |  |  |
| Peso total do aquecedor e bastões | 210 kg |  |  |  |
| Comprimento do aquecedor | 1020 mm |  |  |  |
| Largura do aquecedor | 590 mm |  |  |  |
| Altura do aquecedor | 1400 mm |  |  |  |
| Carrinho para transporte | Carrinho série pesada em estrutura reforçada com chapas de aço com espessura de 3 mm . <br> Possui rodas de 8 ", sendo: 02 rodízios fixos e 02 giratórios com freio. Rodízios em borracha moldada com núcleo de aço estampado. Painel de comando articulável com trava. |  |  |  |

## 5. INSTALAÇÃO

### 5.1. RECOMENDAÇÃO PARA INSTALAÇÃO DO EQUIPAMENTO

Por meio desde documento estão sendo listadas as necessidades para instalação do Aquecedor Indutivo modelo EHP GB10. Para uma maior vida útil do equipamento, recomenda-se que este não seja instalado em locais úmidos ou na presença de água, pois o aquecedor poderá sofrer danos e o operador estará exposto a choques elétricos.

### 5.1.1. Movimentação e posicionamento

Deve ser mantido o devido cuidado na movimentação e posicionamento do equipamento, aconselhamos que seja transportado por meio dos rodízios de movimentação localizados na bancada do equipamento, sendo que o local para destinação do equipamento já deve estar preparado para este.

### 5.1.2. Instalação elétrica

As características técnicas para instalação do equipamento estão demonstradas na figura abaixo. Verifique se a instalação elétrica de sua empresa está dimensionada corretamente e, se for preciso, providencie as alterações necessárias antes de instalar o equipamento.


0 aquecedor deverá ser ligado a uma rede elétrica equilibrada com cabo devidamente conectado no sistema de aterramento. A função do aterramento é evitar que descargas elétricas queimem o equipamento ou provoquem choques durante o manuseio.

| Alimentação do Equipamento |  |
| :--- | :--- |
| Tipo de rede | Bifásica |
| Tensão da rede | $380 \mathrm{Vca}+/-5 \%$ |
| Corrente nominal Equipamento | 80 A |
| Seção dos cabos condutores para as fases | $2 \times 16 \mathrm{~mm}^{2}$ |
| Seção do cabo condutor para terra | $1 \times 10 \mathrm{~mm}^{2}$ |

A alimentação elétrica do aquecedor será no painel elétrico através dos cabos de alimentação em rede Bifásica de $\mathbf{3 8 0 V} \mathbf{~ c a / 6 0 H z ~}+/-5 \%$.


### 5.1.3. IMPORTANTE

- Informações armazenadas no último aquecimento: 0 aquecedor armazena as informações do último aquecimento ocorrido, para alterar o modo de operação para temperatura ou tempo, basta apertar a tecla seleção de "tempo/temperatura" e selecionar o tempo e/ou temperatura desejada nas teclas $\boldsymbol{\wedge}$ (aumentar) ou v (diminuir) no painel;
- Desmagnetização: 0 Aquecedor Indutivo EHP GB10 possui sistema eletrônico de desmagnetização automática no final do ciclo de aquecimento, que será realizado em 3 segundos finais do processo;
- É importante salientar que a temperatura obtida cai gradativamente após o término do aquecimento devido a troca de calor com o meio externo. Por este motivo, dependendo da tolerância dimensional da peça e da distância e tempo entre o aquecimento e a montagem, deve ser considerado um valor de temperatura maior para garantir que no momento da montagem a temperatura esteja ideal.


### 5.1.4. FUNÇÕES DO PAINEL DE CONTROLE




## 6. OPERAÇÃO



Nunca utilizar o aquecedor indutivo com o bastão aberto, isto provocará sobrecorrente.


### 6.1. SEQUÊNCIA OPERACIONAL CONTROLE TEMPERATURA OU TEMPO

O controle por tempo é utilizado quando se é conhecido o tempo de aquecimento e necessita que a operação ocorra no tempo determinado. Neste caso, para determinar o tempo necessário a ser programado no aquecedor indutivo, deve-se aquecer uma peça por controle de temperatura e cronometrar o tempo de aquecimento até atingir a temperatura programada e então programar o tempo obtido no aquecedor.

- 0 aquecedor indutivo sai de fábrica ajustado com tempo de 1 minuto;
- 0 controle por tempo deverá ser usado somente em linhas de produção;
- Após conectar o equipamento na rede elétrica, acionar o disjuntor geral localizado no painel elétrico;
- Selecionar o bastão de aquecimento (conforme a tabela abaixo) adequado para o diâmetro da peça a ser aquecida e posicioná-lo sobre 0 núcleo do aquecedor;

- Conectar o sensor de temperatura no equipamento na lateral do painel de comando.

- Para realizar 0 aquecimento utilizando a bobina do núcleo de aquecimento será necessário:

- Posicionar a peça a ser aquecida e fechar o bastão;

- Posicionar o sensor de temperatura magnético na peça a ser aquecida. Passar pasta térmica no sensor para melhor leitura da temperatura;

- Garantir a centralização da peça na bobina de aquecimento como também a colocação do sensor de temperatura na peça no ponto mais próximo da bobina, conforme imagem.

- Para realizar o aquecimento utilizando o bastão de aquecimento será necessário:

- Abrir o bastão conforme imagem;

- Posicionar o apoio de peças em seu local de aplicação conforme imagem;

- Posicionar a peça a ser aquecida e fechar o bastão;

ATENÇÃO: Garantir a centralização do bastão com a peça a ser aquecida;

- Posicionar o sensor de temperatura magnético (1) na peça a ser aquecida. Passar pasta térmica no sensor para melhor leitura da temperatura. Também garantir a colocação do sensor de
 temperatura na peça no ponto mais próximo do bastão, conforme imagem.
- Em seguida, utilizando aquecimento por bobina ou bastão, será necessário realizar os seguintes procedimentos:

- Selecionar aquecimento por controle de tempo (LED aquecimento por tempo aceso) ou por controle de temperatura (LED aquecimento por tempo apagado);

- O equipamento possui um controlador de temperatura que varia de 0 a $250^{\circ} \mathrm{C}$, caso necessário alterar nas teclas $\Delta$ ou v uma temperatura diferente de $120^{\circ} \mathrm{C}$. A máquina armazena em sua memória interna a última temperatura programada;
- Selecionar o tempo de aquecimento necessário através das teclas $\Delta$ ou $\boldsymbol{v}$. A máquina armazena em sua memória interna o último tempo
 programado;
- Selecionar a potência de aquecimento em 50\% ou 100\%;
- Aconselhamos utilizar potência de $50 \%$, e assim, aumentando o tempo de aquecimento e garantindo um aquecimento homogêneo;

- Acionar o botão "Liga". Após isto, o ciclo de aquecimento será iniciado e ao atingir a temperatura ou o tempo selecionados, o equipamento desligará automaticamente. A desmagnetização ocorrerá após 3 segundos;

- Retirar a peça aquecida usando luvas de proteção térmica e efetuar a montagem;
- Caso necessite interromper o processo de aquecimento, pressionar o botão "Desliga" no painel.



## 7. MANUTENÇÃO

### 7.1. POSSÍVEIS FALHAS

Em caso de falha, fios seccionados, peças soltas o operador deverá colocar o equipamento fora de operação até que seja verificado pela manutenção ou pessoal treinado. Em caso de dúvida, consulte a NSK.


Os procedimentos descritos a seguir somente podem ser realizados por profissionais devidamente treinados e habilitados usando todos os EPI's obrigatórios.

### 7.1.1. 0 EQUIPAMENTO NÃO LIGA

Verificar se há tensão no sistema elétrico. Se constatado que há tensão e mesmo assim o aquecedor não funciona, verificar se o fusível de vidro da placa eletrônica está queimado. Para isso, é necessário abrir a tampa frontal do painel de comando do aquecedor.


### 7.1.2. O EQUIPAMENTO NÃO AQUECE NO MODO TEMPERATURA

Verificar o aspecto e as condições de sensor de temperatura visualmente, e, em seguida, com multímetro na escala de continuidade, fazer a medição conforme imagem abaixo:


### 7.2. POSSÍVEIS FALHAS DE COMANDO NA PLACA

| FALLHA | CAUSA | SOLUÇÃO |
| :---: | :---: | :--- |
| F01 | SENSOR <br> DESCONECTADO <br> OU ABERTO | Verificar se o "plug" do sensor está bem conectado na caixa de comando, se o erro <br> persistir o sensor está danificado, deve entrar em contato com a NSK. |
| F02 | PEÇA SATURADA <br> OU SENSOR <br> FORA DE POSIÇÃO | Verificar a temperatura, material e o dimensional da peça a ser aquecida, se estão <br> acima do limite do equipamento a peça não chegará à temperatura programada e <br> irá estabilizar em uma temperatura abaixo da programada, esta falha irá ocorrer se <br> a peça permanecer 4min17seg em um determinado grau de temperatura, estando <br> este abaixo do programado. |
| F03 | Verificar a posição do sensor se está posicionado fora da área de aquecimento à falha <br> pode ocorrer da mesma maneira. |  |
| TERMOSTATO <br> DESCONECTADO <br> OU ABERTO | Verificar a temperatura do equipamento, o trabalho em regime contínuo e ambiente <br> agressivo pode elevar a temperatura do equipamento al limite, esta falha é uma <br> segurança para desarmar por alta temperatura, se ocorrer aguardar 10min e tentar <br> utilizá-lo novamente, se o erro persistir deve entrar em contato com a NSK. |  |

## 8. SEGURANÇA

### 8.1. INFORMAÇÕES SOBRE SEGURANÇA E MANUTENÇÃO

Para garantir a segurança dos operadores, a correta instalação e funcionamento do equipamento, é necessário que se coloque em prática todas as orientações deste manual.

### 8.1.1. CARACTERÍSTICAS DE SEGURANÇA

0 aquecedor indutivo EHP GB10 é equipado com os seguintes recursos de segurança:

- Proteção automática contra superaquecimento;
- Proteção contra sobre corrente;
- Proteção contra curto circuito;
- No modo temperatura o aquecedor desliga se a sonda de temperatura não registrar um aumento de $1^{\circ} \mathrm{C}$ a cada 255 segundos.


### 8.1.2. CUIDADOS E ADVERTÊNCIAS NA SEGURANÇA

A análise de riscos abaixo caracteriza os riscos potenciais, as medidas de prevenção existentes no equipamento de acordo com normas de segurança e medidas complementares recomendadas.

|  | Riscos | Causa | Efeito | Controle e Defesas existentes | Controle e Defesas complementares (responsabilidade do cliente) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathscr{O} \\ & \frac{0}{4} \\ & \frac{0}{4} \end{aligned}$ | Choque elétrico | Contato acidental com partes energizadas | - Queimaduras; <br> - Riscos <br> Cardíacos; <br> - Sensação <br> de dor. | - Componentes energizados mantidos permanentemente fechados por meio de proteção fixa; <br> - Aterramento do equipamento; <br> - Identificação de partes energizadas; <br> - Interfaces de operação operam em extra baixa tensão; <br> - Dispositivos protetores contra sobre tensão/ curto-circuito; <br> - Conector tipo plug em extra baixa tensão; <br> - Uso de Seal tubo nos conectores das caixas de ligação elétrica; <br> - Trava de segurança no disjuntor geral para manutenção ou inspeção. | - Uso de EPI's (Equipamento de Proteção Individual); <br> - Abertura do equipamento autorizada somente para pessoas treinadas e habilitadas conforme Norma NR10; <br> - Treinamento adequado aos operadores <br> e técnicos de manutenção; <br> - Elaborar Procedimentos de Trabalho a nível gerencial e de execução de serviços; <br> - Vedado 0 uso de adornos pessoais nos trabalhos com instalações elétricas ou em suas proximidades; <br> - Adequação das instalações elétricas; <br> - Uso de ferramentas de trabalho adequadas. |
|  | Temperatura do produto em processo | Contato acidental com partes quentes do produto em processo | - Queimaduras; <br> - Sensação de dor. | - Sinalização do equipamento; <br> - Identificação da necessidade de uso dos EPIs; <br> - Equipamento construído solidamente. 0 calor radiante não ultrapassa os limites de tolerância estabelecidos pela NR15. | - Uso de EPI's (Equipamento de Proteção Individual); <br> - Treinamento adequado aos operadores <br> e técnicos de manutenção; <br> - Elaborar Procedimentos de Trabalho <br> a nível gerencial e de execução de serviços; <br> - Vedado 0 uso de adornos pessoais nas proximidades do equipamento; <br> - Barreiras de protecã̃o. |

### 8.1.3. ANÁLISE DE RISCOS

A análise de riscos abaixo caracteriza os riscos potenciais, as medidas de prevenção existentes no equipamento de acordo com normas de segurança e medidas complementares recomendadas.


### 8.1.4. EQUIPAMENTOS DE PROTEÇÃO INDIVIDUAL RECOMENDADOS

É recomendado que operadores e técnicos de manutenção utilizem EPI's (Equipamentos de Proteção Individual) adequados ao trabalho e com CA (Certificado de Aprovação).


Óculos de Proteção


Luvas de Proteção Térmica


Sapatos de Segurança

### 8.2. CUIDADOS E ADVERTÊNCIA NA MANUTENÇÃO

Para efetuar a manutenção do aquecedor indutivo, o profissional da área de manutenção devidamente treinado e habilitado deverá:

- Desligar o disjuntor geral e travar para impedir a energização;
- Soltar os parafusos da tampa de proteção.

A abertura de painéis energizados deve ser feita somente por técnicos de manutenção com certificação NR10 e usando todos os EPI's obrigatórios.


### 8.2.1. ANÁLISE DE RISCOS

A manutenção preventiva visa à correção de falhas e avarias do equipamento antes mesmo que elas aconteçam. Isso evita prejuízos e riscos de interrupção da produção.

- Verificar o estado geral do equipamento;
- Ao efetuar a limpeza interna, é recomendado o uso de um pincel limpo e seco para a eliminação do pó e resíduos do circuito eletrônico;
- Antes de fechar a tampa do painel, verificar se todos os cabos estão devidamente conectados;
- Observar se o cabo de alimentação não está danificado, e se está corretamente posicionado;
- Proteger o equipamento de ambientes sujos, úmidos e da presença de materiais corrosivos;
- Caso a fita da parte superior do núcleo sair, providenciar uma nova fita;
- Verificar se o núcleo ou bastões de aquecimento não estão danificados;
- Verificar se os bastões de aquecimento não estão abertos, se o núcleo não está batido ou amassado. Caso esteja, o cliente deverá entrar contato com a assistência técnica.


## 9. LISTA DE PEÇAS PARA REPOSIÇÃO

Lista de peças de reposição do aquecedor indutivo:

| Código | Descrição |
| :---: | :---: |
| BGC. 0014 | AUTO TRANSFORMADOR |
| CEK. 0016 | BOTÃO DE COMANDO GN 617.1.8.AK M16 |
| BAL. 0005 | DISJUNTOR BIPOLAR 80A |
| NDI. 0036 | FILTRO RC SENSOR JM |
| BAN. 0001 | FUSÍVEL DE VIDR0 1A TIPO FV2 |
| BFD. 0024 | GRADE NYLON COM FILTR0 GRM80-30 P/ MINI VENTILADOR |
| BFD. 0014 | MINI VENTILADOR 80x80x25mm |
| BEP. 0013 | MÓDULO TIRISTOR 120A |
| 1AB. 00256 | MACACO SANFONA 1000kg |
| BEA. 0017 | PLACA MICRO PROCESSADA 1 TRAFO |
| NDI. 0037 | SNUBER RC |
| NDI. 0003 | SENSOR MAGNÉTICO P AQUECEDOR INDUTIVO JAMO 3 PINOS 2 METROS |
| DFE. 0008 | PASTA TÉRMICA 15G |
| NDC. 00089 | BASTÃO DE ACO SILÍCIO GNO $23 \times 23 \times 505 \mathrm{MM}$ |
| NDC. 00083 | BASTÃO DE ACO SILÍCIO GNO $43 \times 43 \times 505 \mathrm{MM}$ |
| NDC. 00082 | BASTÃ0 DE ACO SILÍCIO GNO $58 \times 58 \times 505 \mathrm{MM}$ |
| NDC. 0080 | BASTÃ0 DE ACO SILÍCIO GNO $73 \times 73 \times 585 M M$ DESLIZANTE |

## 10. GARANTIA

A NSK oferece garantia integral de peças, partes e mão de obra do equipamento pelo período de 12 meses, contados a partir da data de emissão da nota fiscal da fábrica. Para a substituição de peças em garantia com a presença de nosso técnico em sua fábrica as eventuais despesas de viagem ocorrerão por conta do cliente. 0 prazo de garantia estabelecido independe da data de instalação do produto e de sua entrada em operação. Na ocorrência de uma avaria em relação à operação normal do produto, o cliente deve comunicar imediatamente por escrito à NSK sobre os defeitos ocorridos.

Para ter direito à garantia, o cliente deve atender às especificações dos documentos técnicos da NSK, especialmente àquelas previstas no Manual de Instalação, Operação e Manutenção dos produtos, e às normas e regulamentações vigentes em cada país, além de realizar semestralmente todos os planos de revisões previstos neste manual para o equipamento com o acompanhamento de um técnico da NSK.

Não possuem cobertura da garantia os defeitos decorrentes de utilização, operação e/ou instalação inadequadas ou inapropriadas dos equipamentos, sua falta de manutenção preventiva, bem como defeitos decorrentes de fatores externos ou equipamentos e componentes não fornecidos pela NSK.

A garantia também não se aplica se o cliente, por própria iniciativa, romper ou violar os lacres contidos no equipamento, efetuar reparos e/ou modificações no equipamento sem prévio consentimento por escrito da NSK.

A garantia não cobre equipamentos, partes e/ou componentes, cuja vida útil for inferior ao período de garantia. Não cobre, igualmente, defeitos e/ou problemas decorrentes de força maior ou outras causas que não podem ser atribuídas à NSK, como por exemplo, mas não limitado a: especificações ou dados incorretos ou incompletos por parte do cliente, transporte, armazenagem, manuseio, instalação, operação e manutenção em desacordo com as instruções fornecidas, acidentes, deficiências de obras civis, utilização em aplicações e/ou ambientes para os quais o produto não foi projetado, equipamentos e/ou componentes não inclusos no escopo de fornecimento da NSK. A garantia não inclui os serviços de desmontagem nas instalações do cliente, os custos de transporte do produto e as despesas de locomoção, hospedagem e alimentação do pessoal da Assistência Técnica, quando solicitados pelo cliente.

Os serviços em garantia serão prestados exclusivamente na Assistência Técnica da NSK ou na própria fábrica do cliente. Em nenhuma hipótese, estes serviços em garantia prorrogarão os prazos de garantia do equipamento.

A responsabilidade civil da NSK está limitada ao produto fornecido, não se responsabilizando por danos indiretos ou emergentes, tais como lucros cessantes, perdas de receitas e afins que, porventura, decorrerem do contrato firmado entre as partes.

Assistência Técnica: Prezado cliente ao enviar o aquecedor indutivo NSK para conserto, revisão ou reparo por gentileza, enviar junto com o equipamento todos seus componentes.

Nosso departamento de assistência técnica está equipado e preparado para atendê-lo o mais breve possível e de maneira eficiente. Para os serviços prestados durante o período de garantia, serão cobradas somente:

- Despesas com refeições (diurnas e noturnas);
- Despesas com hospedagem;
- Despesas com transporte (horas de viagem, quilometragem rodada, bilhetes aéreos, rodoviários, translados, pedágios, etc.).



